| USN | / | 603 | | | | | | | | | |-----|---|-----|--|--|--|--|--|--|--|--| |-----|---|-----|--|--|--|--|--|--|--|--| ## Sixth Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Satellite Communication** Time: 3 hrs. Max. Marks:100 Note: Answer any FIVE full questions, selecting atleast TWO questions from each part. | | PART-A | | |---|---|--| | | a. List the services provided by the satellite with frequency band designation. b. Define the terms in Inclination ii) Sub satellite path iii) Perigee iv) Apoc. Determine the limits of visibility for an earth station situated at mean 54.42°N and longitude 102.20°w. Assume minimum angle of elevation. | gee. (04 Marks) sea level at latitude | | 2 | a. State and explain with necessary diagram and equations Kepler's three la | | | | b. Determine the angle of tilt required for a polarmount used with an ear 54°N. Assume spherical earth of mean radius 6371 km and ignore earth c. List Kepler's elemental set. | | | | | | | | b. An unlink operates at 14GHz and flux density required to saturate -120B(w/m²). The free space loss is 207dB and other propagation los Calculate the earth station [EIRP] required for saturation, assuming a Assume [RFL[is negligible. | the transponder is
sees amount to 2dB.
clear sky conditions.
(06 Marks) | | | c. Calculate for a frequency of 12GHz and for horizontal and vertical pattenuation which is exceeded for 0.01 percent of the time in any year, for 10mm/h, the earth station attitude is 600m and the antenna, elevation a height is 3km and ah > 0.0188, $a_V = 0.0168$, $b_h = 1.217$, $b_V = 1.2$. Note: All heights and lengths are in KM and rain rate is mm/h. | or a point rain rate at | | 1 | a. Explain momentum wheel stabilization of satellite. | (07 Marks) | | | b. Briefly explain TT and C subsystems.c. Explain satellite transponder. | (06 Marks)
(07 Marks) | | | PART - B |) | | 5 | a. Explain the DBSTV/FM reception. | (06 Marks) | | | b. Describe the community antenna TV system.c. Explain with figure preassigned FDMA. | (06 Marks)
(08 Marks) | | 6 | a. Explain onboard signal processing for FDMA/TDM operation. | (07 Marks) | | | b. Briefly explain spade system with chanelising scheme. | (96 Marks) | | | c. Explain satellite switched TDMA. | (07 Marks) | | 7 | Explain the following: | (6)_ | | | a. Transponder capacityb. Bit rate digital TV | (07 Marks)
(07 Marks) | | | c. Frequency and polarization. | (06 Marks) | | 8 | a. Explain global positioning system in detail. | (08 Marks) | | | | (OC Manka) | | | b. Describe the operation of VSAT system and application.c. Explain Radarsat. | (06 Marks)
(06 Marks) |